ELEMENTARY LINEAR ALGEBRA - SET 4

Analytic geometry in the 3d space

1. Find the values of the parameters t, s for which the vectors $\vec{v}=(1-t, 3,-1)$ and $\vec{u}=(-2,4-s, 2)$ are parallel.
2. Find the values of the parameter t for which vectors $\vec{v}=(t, 2,1-t)$ and $\vec{u}=$ $(t, 1,-2)$ are perpendicular.
3. Compute the area of the parallelogram spanned by vectors $\vec{v}=(-1,2,5)$ and $\vec{u}=(0,3,2)$.
4. Compute the area of the triangle with vertices $A=(0,1,1), B=(3,0,1)$ and $C=(0,1,2)$.
5. For the triangle in Problem 4 compute the length of the altitude through the vertex A.
6. Compute the volume of the parallelepiped spanned by vectors $\vec{v}=(1,2,3), \vec{u}=$ $(0,4,1)$ and $\vec{w}=(-1,0,2)$.
7. Compute the volume of the tetrahedron with vertices $A=(1,1,1), B=(1,2,3)$, $C=(0,4,1)$ and $D=(2,2,2)$.
8. For the tetrahedron in Problem 7 compute the lenght of the altitude through the vertex A.
9. Find normal and parametric equations of the plane
(a) through the points $P=(1,-1,0), Q=(2,3,7)$ and $C=(4,0,1)$.
(b) through the point $P=(-2,5,4)$ and including the $O z$ axis,
(c) through the point $P=(-1,2,4)$ and perpendicular to the $O y$ axis.
10. Do the parameteric equations

$$
\left\{\begin{array} { l }
{ x = 3 - t + 2 s } \\
{ y = - 1 + t } \\
{ z = 2 + t - 3 s }
\end{array} \text { and } \quad \left\{\begin{array}{l}
x=4+3 t+3 s \\
y=t-s \\
z=-2 t-4 s
\end{array}\right.\right.
$$

describe the same plane? Justify your answer.
11. Find a parametric equation of the plane given by the equation $2 x+y-z-7=0$
12. Find a normal equation of the plane given by the parametric equation

$$
\left\{\begin{array}{l}
x=t+s \\
y=-2-2 s \\
z=3+3 t-s
\end{array}\right.
$$

13. Explain why the parametric equations

$$
\left\{\begin{array} { l }
{ x = 1 - t } \\
{ y = 2 - 3 t } \\
{ z = 4 t }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x=2 t \\
y=-1+6 t \\
z=4-8 t
\end{array}\right.\right.
$$

describe the same line.
14. Find a parametric equation of the line in which two planes

$$
\left\{\begin{array}{l}
x+y-3=0 \\
-y+z-1=0
\end{array}\right.
$$

intersect each other.
15. Find the intersection point of the line $l: x=t, y=1-2 t, z=-3+2 t$ and the plane π : $3 x-y-2 z-5=0$.
16. Find the distance between the point $P=(1,0,2)$ and the plane $\pi: x+2 y-3 z+$ $1=0$
17. Find the distance between the point $P=(2,5,1)$ and the line $l: x=t, y=$ $1-2 t, z=-3+2 t$.
18. Find the distance between two parallel lines

$$
\left\{\begin{array} { l }
{ x + y + z - 3 = 0 } \\
{ x - 2 y - z - 1 = 0 }
\end{array} \text { and } \left\{\begin{array}{l}
x+y+z-3=0 \\
x-2 y-z+4=0
\end{array}\right.\right.
$$

Romuald Lenczewski

(most problems are taken from the lists of M. Gewert and Z. Skoczylas)

